AI Agents Requirements

What AI Agents Need to Be Successful

Date: January 2026 Purpose: Detailed analysis of what AI agents need from OASIS infrastructure and what additional capabilities must be built


Executive Summary

AI agents need 10 core capabilities to operate successfully in a multi-agent system. OASIS already provides 6 of these through existing infrastructure. We need to build 4 new layers specifically for agent orchestration.

Current OASIS Coverage: 60% Gap to Fill: 40% (Agent-specific orchestration layer)


Part 1: What AI Agents Need (The 10 Core Requirements)

1. Identity & Discovery πŸ”‘

What Agents Need:

  • Unique agent identity (like user accounts)

  • Capability registry (what can this agent do?)

  • Discovery mechanism (find agents by capability)

  • Agent metadata (version, status, performance)

Current OASIS: βœ… 80% Complete

  • Avatar System provides identity

  • Provider registry exists (can extend for agents)

  • Missing: Agent capability matching, agent discovery API

2. Communication & Messaging πŸ’¬

What Agents Need:

  • Direct agent-to-agent messaging

  • Broadcast/event system for announcements

  • Message queuing for async communication

  • Message routing (send to agent by capability)

Current OASIS: βœ… 70% Complete

  • MESSAGING API exists (avatar-to-avatar)

  • ONET network provides broadcasting

  • Missing: Agent-specific message routing, agent message queues

3. Shared State & Memory 🧠

What Agents Need:

  • Shared knowledge base (what agents know)

  • Agent memory persistence

  • State synchronization across agents

  • Conflict resolution for shared data

Current OASIS: βœ… 90% Complete

  • Holon system provides shared state

  • HyperDrive handles synchronization

  • Consensus engine resolves conflicts

  • Missing: Agent-specific memory schemas

4. Task Delegation & Routing πŸ“‹

What Agents Need:

  • Task queue system

  • Capability-based task routing

  • Task assignment and tracking

  • Task result aggregation

Current OASIS: ⚠️ 30% Complete

  • HyperDrive routes to providers (similar concept)

  • Missing: Task queue API, task routing engine, task tracking

5. Resource Management πŸ’»

What Agents Need:

  • Compute resource allocation

  • Storage quotas per agent

  • Rate limiting and quotas

  • Cost tracking per agent

Current OASIS: βœ… 60% Complete

  • Provider system manages resources

  • Missing: Agent-specific quotas, agent cost tracking

6. Security & Permissions πŸ”’

What Agents Need:

  • Agent authentication

  • Permission system (what agents can do)

  • API key management per agent

  • Rate limiting per agent

Current OASIS: βœ… 80% Complete

  • Avatar system provides authentication

  • KEYS API manages cryptographic keys

  • Missing: Agent-specific permissions, agent API keys

7. Observability & Debugging πŸ”

What Agents Need:

  • Agent execution logs

  • Agent performance metrics

  • Agent error tracking

  • Agent activity dashboard

Current OASIS: βœ… 70% Complete

  • STATS API provides metrics

  • Blockchain provides audit trail

  • Missing: Agent-specific logs, agent debugging tools

8. Consensus & Coordination 🀝

What Agents Need:

  • Multi-agent decision making

  • Consensus algorithms for agent groups

  • Conflict resolution between agents

  • Agent voting/agreement mechanisms

Current OASIS: βœ… 85% Complete

  • HyperDrive consensus engine exists

  • Oracle system handles multi-source consensus

  • Missing: Agent-specific consensus protocols

9. Persistence & Reliability πŸ’Ύ

What Agents Need:

  • Agent state persistence

  • Agent recovery after failure

  • Agent state backup

  • Cross-chain agent state

Current OASIS: βœ… 95% Complete

  • Multi-provider persistence (MongoDB, IPFS, blockchains)

  • Auto-failover ensures reliability

  • Missing: Agent-specific recovery mechanisms

10. Workflow Orchestration πŸ”„

What Agents Need:

  • Multi-step task workflows

  • Agent pipeline orchestration

  • Conditional routing (if agent A fails, try agent B)

  • Workflow state management

Current OASIS: ⚠️ 20% Complete

  • HyperDrive provides basic routing

  • Missing: Workflow engine, pipeline orchestration, conditional logic


Part 2: What OASIS Already Provides (The Foundation)

βœ… Already Built - Ready to Use:

1. Identity System (Avatar API)

// Agents can register as Avatars
POST /api/avatar/register
{
  "username": "agent_001",
  "avatarType": "AI_Agent",
  "metadata": {
    "capabilities": ["image_generation", "text_analysis"],
    "model": "gpt-4",
    "version": "1.0"
  }
}

What This Gives Agents:

  • Unique identity across all systems

  • Authentication and authorization

  • Profile management

  • Cross-chain identity

2. Communication (MESSAGING API)

// Agents can message each other
POST /api/messaging/send-message
{
  "fromAvatarId": "agent_001",
  "toAvatarId": "agent_002",
  "message": "Can you process this image?",
  "metadata": {
    "taskId": "task_123",
    "priority": "high"
  }
}

What This Gives Agents:

  • Direct agent-to-agent communication

  • Message history

  • Notification system

  • Cross-chain messaging

3. Shared State (Holon System)

// Agents can share knowledge
POST /api/data/save-holon
{
  "name": "agent_knowledge_base",
  "holonType": "AgentMemory",
  "metadata": {
    "agentId": "agent_001",
    "knowledge": {...},
    "timestamp": "2026-01-15T10:00:00Z"
  }
}

What This Gives Agents:

  • Shared memory across agents

  • Persistent state storage

  • Multi-provider backup

  • Conflict resolution

4. Resource Management (Provider System)

// Agents can use any provider
GET /api/provider/health
// Returns: Available compute/storage resources

POST /api/data/save-holon
// Automatically routes to best provider

What This Gives Agents:

  • Access to 50+ providers

  • Auto-failover if provider fails

  • Load balancing

  • Cost optimization

5. Consensus Engine (HyperDrive)

// Multi-agent decisions
// HyperDrive consensus engine aggregates results
// from multiple agents/providers

What This Gives Agents:

  • Multi-agent consensus

  • Conflict resolution

  • Weighted decision making

  • Reliability through redundancy

6. Observability (STATS API)

// Agent performance tracking
GET /api/stats/avatar/{agentId}
// Returns: Performance metrics, activity logs

What This Gives Agents:

  • Performance metrics

  • Activity tracking

  • Error monitoring

  • Usage statistics


Part 3: What We Need to Build (The Agent Layer)

🚧 New Capabilities Required:

1. Agent Registry & Discovery System ⭐ HIGH PRIORITY

What It Does:

  • Register agents with their capabilities

  • Discover agents by capability/requirement

  • Match tasks to agents

  • Track agent availability

API Design:

// Register agent with capabilities
POST /api/agents/register
{
  "agentId": "agent_001",
  "name": "Image Generation Agent",
  "capabilities": [
    {
      "type": "image_generation",
      "models": ["dall-e-3", "midjourney"],
      "maxResolution": "4096x4096",
      "costPerRequest": 0.02
    },
    {
      "type": "image_analysis",
      "models": ["gpt-4-vision"],
      "maxImages": 10
    }
  ],
  "endpoints": {
    "api": "https://agent-001.example.com/api",
    "webhook": "https://agent-001.example.com/webhook"
  },
  "availability": "online",
  "maxConcurrentTasks": 10
}

// Discover agents by capability
GET /api/agents/discover?capability=image_generation&available=true
// Returns: List of agents that can generate images

// Get agent details
GET /api/agents/{agentId}
// Returns: Full agent profile, capabilities, status

Implementation:

  • Extend Avatar API for agent-specific fields

  • Create AgentCapability Holon type

  • Build discovery search index

  • Add agent health monitoring

Timeline: 4-6 weeks


2. Task Queue & Workflow Engine ⭐ HIGH PRIORITY

What It Does:

  • Queue tasks for agents

  • Route tasks to appropriate agents

  • Track task status and results

  • Orchestrate multi-step workflows

API Design:

// Submit task to queue
POST /api/agents/tasks/submit
{
  "taskId": "task_123",
  "type": "image_generation",
  "requirements": {
    "capability": "image_generation",
    "model": "dall-e-3",
    "resolution": "2048x2048"
  },
  "input": {
    "prompt": "A futuristic cityscape",
    "style": "cyberpunk"
  },
  "priority": "high",
  "deadline": "2026-01-15T12:00:00Z",
  "callback": "https://myapp.com/webhook/task-complete"
}

// Task routing (automatic)
// OASIS finds agent with matching capability
// Routes task to best available agent
// Tracks task status

// Get task status
GET /api/agents/tasks/{taskId}
// Returns: Status, assigned agent, progress, result

// Multi-step workflow
POST /api/agents/workflows/create
{
  "workflowId": "workflow_001",
  "steps": [
    {
      "stepId": "step_1",
      "type": "text_analysis",
      "input": "{{input.text}}",
      "onSuccess": "step_2",
      "onFailure": "step_error"
    },
    {
      "stepId": "step_2",
      "type": "image_generation",
      "input": "{{step_1.result.summary}}",
      "onSuccess": "step_3"
    },
    {
      "stepId": "step_3",
      "type": "image_analysis",
      "input": "{{step_2.result.imageUrl}}",
      "onSuccess": "complete"
    }
  ]
}

Implementation:

  • Build task queue system (Redis/RabbitMQ backend)

  • Create task routing engine

  • Build workflow state machine

  • Add task result aggregation

Timeline: 6-8 weeks


3. Agent Communication Protocol ⭐ MEDIUM PRIORITY

What It Does:

  • Standardized agent-to-agent communication

  • Agent message routing by capability

  • Agent event broadcasting

  • Agent collaboration protocols

API Design:

// Send message to agent (by capability)
POST /api/agents/messages/send-by-capability
{
  "capability": "image_generation",
  "message": {
    "type": "task_request",
    "taskId": "task_123",
    "input": {...}
  },
  "routing": {
    "strategy": "first_available", // or "best_match", "load_balanced"
    "timeout": 30
  }
}

// Agent event broadcasting
POST /api/agents/events/broadcast
{
  "event": "task_completed",
  "agentId": "agent_001",
  "data": {
    "taskId": "task_123",
    "result": {...}
  },
  "subscribers": ["agent_002", "agent_003"] // or "all"
}

// Agent collaboration protocol
POST /api/agents/collaborate
{
  "taskId": "task_123",
  "agents": ["agent_001", "agent_002", "agent_003"],
  "protocol": "consensus", // or "voting", "delegation"
  "input": {...}
}

Implementation:

  • Extend MESSAGING API for agent routing

  • Build agent event system

  • Create collaboration protocols

  • Add agent message queuing

Timeline: 4-6 weeks


4. Agent Monitoring & Debugging Dashboard ⭐ MEDIUM PRIORITY

What It Does:

  • Real-time agent status monitoring

  • Agent performance analytics

  • Agent error tracking and debugging

  • Agent cost tracking

API Design:

// Get agent status
GET /api/agents/{agentId}/status
// Returns: Online/offline, current tasks, performance metrics

// Get agent performance
GET /api/agents/{agentId}/performance
// Returns: Tasks completed, success rate, avg response time, cost

// Get agent logs
GET /api/agents/{agentId}/logs?startTime=...&endTime=...
// Returns: Execution logs, errors, debug info

// Agent debugging
POST /api/agents/{agentId}/debug
{
  "taskId": "task_123",
  "action": "trace", // or "replay", "inspect"
  "options": {
    "includeState": true,
    "includeMessages": true
  }
}

Implementation:

  • Build agent monitoring service

  • Create logging aggregation

  • Build debugging tools

  • Create dashboard UI

Timeline: 6-8 weeks


Part 4: Implementation Roadmap

Phase 1: Foundation (Weeks 1-6) ⭐ CRITICAL

Goal: Enable basic agent registration and discovery

Tasks:

  1. Agent Registry API (2 weeks)

    • Extend Avatar API for agent registration

    • Create AgentCapability Holon schema

    • Build agent metadata storage

  2. Agent Discovery (2 weeks)

    • Build capability search index

    • Create discovery API endpoints

    • Add agent health monitoring

  3. Basic Task Queue (2 weeks)

    • Simple task submission API

    • Task routing to agents

    • Task status tracking

Deliverable: Agents can register, be discovered, and receive tasks


Phase 2: Communication (Weeks 7-12) ⭐ HIGH PRIORITY

Goal: Enable agent-to-agent communication and collaboration

Tasks:

  1. Agent Messaging (3 weeks)

    • Extend MESSAGING API for agents

    • Build capability-based routing

    • Add message queuing

  2. Agent Events (2 weeks)

    • Event broadcasting system

    • Agent subscriptions

    • Event history

  3. Agent Collaboration (3 weeks)

    • Multi-agent protocols

    • Consensus mechanisms

    • Result aggregation

Deliverable: Agents can communicate and collaborate


Phase 3: Orchestration (Weeks 13-18) ⭐ HIGH PRIORITY

Goal: Enable complex workflows and task orchestration

Tasks:

  1. Workflow Engine (4 weeks)

    • Workflow definition language

    • State machine execution

    • Conditional routing

  2. Task Management (2 weeks)

    • Advanced task queuing

    • Task prioritization

    • Task scheduling

Deliverable: Complex multi-agent workflows work end-to-end


Phase 4: Observability (Weeks 19-24) ⭐ MEDIUM PRIORITY

Goal: Full visibility into agent operations

Tasks:

  1. Monitoring System (3 weeks)

    • Real-time agent status

    • Performance metrics

    • Health checks

  2. Debugging Tools (3 weeks)

    • Agent execution logs

    • Error tracking

    • Debug dashboard

Deliverable: Complete observability into agent fleet


Part 5: Technical Architecture

Agent Layer Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              Agent Orchestration Layer                  β”‚
β”‚  (NEW - What We Need to Build)                         β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                         β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚ Agent        β”‚  β”‚ Task Queue   β”‚  β”‚ Workflow    β”‚ β”‚
β”‚  β”‚ Registry     β”‚  β”‚ Engine       β”‚  β”‚ Engine       β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚         β”‚                  β”‚                  β”‚         β”‚
β”‚         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜         β”‚
β”‚                            β”‚                            β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚      Agent Communication Layer                       β”‚ β”‚
β”‚  β”‚  (Extends MESSAGING API)                             β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚                            β”‚                            β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                             β”‚
                             β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚         Existing OASIS Infrastructure                 β”‚
β”‚  (Already Built - Foundation)                          β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                         β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚ Avatar API   β”‚  β”‚ MESSAGING    β”‚  β”‚ Holon       β”‚  β”‚
β”‚  β”‚ (Identity)   β”‚  β”‚ API          β”‚  β”‚ System      β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”‚                                                         β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚ HyperDrive   β”‚  β”‚ Provider     β”‚  β”‚ STATS API   β”‚  β”‚
β”‚  β”‚ (Consensus)  β”‚  β”‚ System       β”‚  β”‚ (Metrics)   β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”‚                                                         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Part 6: Example: Multi-Agent Image Generation Workflow

Use Case: Generate and analyze an image using multiple agents

// Step 1: Register agents
await oasis.agents.register({
  agentId: "text_agent",
  capabilities: [{ type: "text_analysis" }]
});

await oasis.agents.register({
  agentId: "image_agent",
  capabilities: [{ type: "image_generation" }]
});

await oasis.agents.register({
  agentId: "analysis_agent",
  capabilities: [{ type: "image_analysis" }]
});

// Step 2: Create workflow
const workflow = await oasis.agents.workflows.create({
  workflowId: "image_gen_workflow",
  steps: [
    {
      stepId: "analyze_text",
      type: "text_analysis",
      agent: "text_agent", // or auto-discover
      input: "{{input.text}}"
    },
    {
      stepId: "generate_image",
      type: "image_generation",
      agent: "image_agent",
      input: "{{analyze_text.result.summary}}",
      dependsOn: ["analyze_text"]
    },
    {
      stepId: "analyze_image",
      type: "image_analysis",
      agent: "analysis_agent",
      input: "{{generate_image.result.imageUrl}}",
      dependsOn: ["generate_image"]
    }
  ]
});

// Step 3: Execute workflow
const result = await oasis.agents.workflows.execute({
  workflowId: "image_gen_workflow",
  input: {
    text: "A futuristic cityscape at sunset"
  }
});

// Step 4: Get results
// result.steps.analyze_text.result = { summary: "..." }
// result.steps.generate_image.result = { imageUrl: "..." }
// result.steps.analyze_image.result = { description: "..." }

What OASIS Provides:

  • βœ… Agent identity (Avatar API)

  • βœ… Agent communication (MESSAGING API)

  • βœ… Shared state (Holon system)

  • βœ… Task routing (HyperDrive)

  • βœ… Persistence (Multi-provider)

  • βœ… Consensus (HyperDrive engine)

What We Need to Build:

  • 🚧 Agent registry/discovery

  • 🚧 Task queue system

  • 🚧 Workflow engine

  • 🚧 Agent monitoring


Part 7: Competitive Advantages

Why OASIS is Perfect for AI Agents:

  1. Multi-Chain by Default

    • Agents can operate across 50+ blockchains

    • No single point of failure

    • Cross-chain agent state

  2. Proven Reliability

    • 4+ years production experience

    • Auto-failover ensures uptime

    • Enterprise-grade infrastructure

  3. Complete Infrastructure

    • Identity, messaging, storage, consensus all built

    • Just need agent-specific orchestration layer

  4. Cost-Effective

    • One API replaces entire agent infrastructure

    • No need to build from scratch

  5. Future-Proof

    • New providers = new agent capabilities automatically

    • Universal API works with any agent framework


Part 8: Success Metrics

Key Performance Indicators:

  1. Agent Registration

    • Target: 1000+ agents registered in first 6 months

    • Metric: Agents registered per week

  2. Task Throughput

    • Target: 1M+ tasks processed per month

    • Metric: Tasks per second

  3. Agent Uptime

    • Target: 99.9% agent availability

    • Metric: Agent health monitoring

  4. Workflow Success Rate

    • Target: 95%+ workflow completion rate

    • Metric: Successful workflows / total workflows

  5. Agent Discovery

    • Target: <100ms agent discovery time

    • Metric: Discovery API response time


Conclusion

OASIS provides 60% of what AI agents need through existing infrastructure. We need to build 4 new layers (Agent Registry, Task Queue, Workflow Engine, Monitoring) to complete the agent orchestration platform.

Timeline: 6 months to full agent platform Priority: High - This is a major market opportunity Complexity: Medium - Building on solid foundation

Next Steps:

  1. Start Phase 1 (Agent Registry) immediately

  2. Partner with AI agent frameworks (LangChain, AutoGPT)

  3. Build MVP in 6 weeks

  4. Launch beta with select partners


Created: January 2026 Status: Ready for Implementation Contact: For questions about agent requirements

Last updated